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Abstract. Recent progress in computer vision has been driven by high-
capacity deep convolutional neural network (CNN) models trained on
generic large datasets. However, creating large datasets with dense pixel-
level labels is extremely costly. In this paper, we focus on the problem
of instance segmentation for robotic manipulation using rich image and
depth features. To avoid intensive human labeling, we develop an auto-
mated rendering pipeline for rapidly generating labeled datasets. Given
3D object models as input, the rendering pipeline produces photorealis-
tic images with pixel-accurate semantic label maps and depth maps. The
synthetic dataset is then used to train an RGB-D segmentation model
by extending the Mask R-CNN framework for depth input fusion. Our
results open up new possibilities for advancing robotic perception using
cheap and large-scale synthetic data.
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1 Introduction

Over the past two decades, robotic solutions have been increasingly deployed
in various domains, including households, industrial manufacturing, warehouse
automation, and so on. However, it is still challenging for robots to perform com-
plex tasks autonomously in unstructured and unknown environments. Grasping
and manipulating [1] individual items in cluttered and constrained space is such
a problem remaining largely unsolved. Consider the process of picking up all
the objects from a cluttered bin, the objects could be arranged with partial or
even full occlusion. Heavy stacking of several homogeneous objects also poses
non-trivial challenges for the robot to determine the correct number of those
instances. These issues must be addressed from the perception side.

Remarkable progress has been made by utilizing deep learning to percep-
tion problems in recent years. Those promising results are typically obtained by
training Convolutional Neural Networks (CNNs) using an extensive amount of
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labeled data. Though there exist unsupervised methods such as convolutional
autoencoders to reduce the required labeled training samples, the performance
of these approaches is less satisfying. Therefore a key question is how to create
such large datasets with minimal human labor.

Recently an increasingly popular approach is to avoid manual annotations by
using synthetic data generated by simulators. While labeled data are difficult to
obtain in the real world, they are very easy to generate in the simulator. It has
been shown that CNNs trained in synthetic data exhibit reasonable generaliza-
tion performance on several perception tasks such as object detection and pose
estimation [2, 3]. This opens up new promises for transferring deep perception
models trained in simulators to real-world robotic scenarios.

In this paper we study perception for robotic manipulation in cluttered envi-
ronments. The perception capability to segment each object instance is crucial
for successful manipulation. We focus on the instance segmentation problem,
which requires the detection of all objects in an image while also precisely seg-
menting each instance. We develop an automated rendering pipeline to generate
labeled datasets for training CNNs. Our pipeline takes 3D CAD models as input
and produces photorealistic labeled images with enough variety. We train an
RGB-D objectness instance segmentation system by extending Mask R-CNN [4]
to leverage depth sensor information. Through extensive experiments, we show
that models trained on photorealistic synthetic data allow for accurate object
instance segmentation in real-world manipulation scenarios.

2 Related Work

Object detection and segmentation has been dramatically improved in recent
years. For object detection, one successful line of work considers the task as
region proposal followed by classification and scoring. The so-called Region-based
CNN (R-CNN) framework [5, 6] has evolved much both in terms of accuracy
and efficiency. The success of semantic segmentation dates back to the advent of
Fully Convolutional Networks (FCNs) [7]. The recent Mask R-CNN [4] extends
R-CNN framework by adding a small FCN branch for predicting segmentation
masks and is currently the state of the art for object instance segmentation.
To utilize deep learning in robotic vision, most existing work attempts to make
use of the real-world data in an efficient manner. These methods either set up
a self-supervised training pipeline in real world [8] or apply transfer learning by
using a small amount of real-world samples [9].

Synthetic data has been extensively used in computer vision. Modern open-
world computer games have been used to create perception benchmark [10]. 3D
object models are also increasingly used for training neural networks for object
detection [11], human pose estimation [12] and viewpoint estimation [13].

Synthetic data has also been applied to robotic vision. Sadeghi et al. [14]
learn a policy for real-world quadrotor obstacle avoidance by using a simulator
with varied 3D scenes and textures. [15] demonstrates that the behavior of a
high-level control policy trained in a physics simulator can be transferred to
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real-world quadrotor for autonomous target following. In [2], the authors propose
a self-supervised learning system for object detection, where the initial model
is pre-trained using synthetic images and fine-tuned over real-world images. [3]
explores the domain randomization technique in pose estimation by training only
in simulated images with non-realistic random textures.

3 Synthetic Data Generation

Figure 1 shows the pipeline for synthetic data generation. Our rendering system
is based on Blender [16]. Our 3D CAD model database is a subset of YCB object
dataset [17] containing 20 objects. For each scene, we first choose a subset of
objects from the model database with random initial poses above the bin. Then
the Bullet physics [18] engine simulates the objects falling into the bin by gravity
before settling down into a stable equilibrium state. The final poses will then
be rendered with the specific setting of lighting condition and camera view to
generate the final RGB output.

3D textured mesh models

camera

light

3D scenes + random texture

INPUT OUTPUT

RGB segments depth

Fig. 1: Our pipeline for generating synthetic data.

Fig. 2: Sample RGB images from our generated dataset.

Object poses: We maintain a set of dropping positions relative to the bin to
make sure that object will mostly drop into the bin. The orientations are sampled
from {(0, 0, 0), (π/2, 0, 0), (0, π/2, 0), (0, 0, π/2)} to cover all possible views.

Lighting and camera: We use point lighting source, which is varied with
respect to location and intensity to create shadows and over exposures. The
projective camera has a resolution of 640 × 480, focal length of 35mm. The
camera position is sampled from a pyramid on top of the bin center.

Domain randomization: We also domain randomize the background bin.
In particular, the random textures are chosen from random RGB values or sam-
pled from online material texture resources. Fig. 2 shows some samples.
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4 Learning Objectness Instance Segmentation

Our instance segmentation system is based on Mask R-CNN [4]. We develop
several techniques to leverage Mask R-CNN with depth input for instance seg-
mentation in the manipulation scenario.

Objectness training: Instead of performing multi-class instance segmen-
tation, here we only care about objects versus non-objects. Therefore we utilize
objectness Mask R-CNN to distinguish objects from non-objects (background).
Intuitively, learning the notion of objectness instance makes it easier for the
model to generalize to novel objects unseen in the training set.

Model architecture: Our model uses the ResNet-50 [19] with Feature Pyra-
mid Network (FPN) [20] as the convolutional backbone due to its accuracy and
efficiency. The original Mask R-CNN only takes an RGB image as input and
produces a set of detection bounding boxes and mask maps. To make full use of
RGB-D cameras, we extend the Mask R-CNN framework to leverage depth infor-
mation. Figure 3 shows the proposed multi-modal network architecture, where
both the RGB input and the depth input (replicated across channels to match
the RGB) are fed into the shared ResNet-50 tower. Then the feature maps are
concatenated across channels, followed by an additional convolutional layer to
merge the features. The rest of the network remains the same. One advantage
of this design is that both the RGB input and depth input can utilize available
ResNet-50 backbone pre-trained in ImageNet [21] dataset. The whole network
is then fine-tuned for the segmentation task.
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Fig. 3: An illustration of the original Mask R-CNN architecture (left) and the
proposed RGB-D Mask R-CNN architecture (right).

5 Multi-view Real-World Data Generation

We also develop an automated approach to efficiently generate real-world labeled
data by leveraging robots with wrist mounted cameras. We program the robot
to take color and depth images from multiple views by generating camera poses
in a pyramid on top of the table center with a gazing constraint. For each scene,
the robot takes more than fifty views of images, five of which are manually
labeled. We then use a correspondence algorithm described below to label each
point with consistent instance identity (ID) from the separate three views in the
fused point cloud. Finally, we perform projection of the labeled point cloud onto
each unlabeled view and generate segmentation masks for each of them. Figure 4
shows the pipeline of the fusing algorithm.
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Fig. 4: Multi-view label fusing pipeline.

Multi-view instance matching: For two different labeled views, the two
point clouds corresponding to the same instance usually do not share the same
label ID. We assume that for the labeled views, the corresponding point clouds of
the same instance viewed from different camera poses still share a certain amount
of overlapping area. This can be then used to decide instance correspondence
and merging, as described as follows.

1. We construct an occupancy grid out of the existing merged point cloud
(initialized from the first point cloud): each grid gijk stores the points that
belong to the grid and the label of the grid lijk is determined as the majority
label among all points in the grid.

2. To merge a new labeled view, for each point p in the point cloud PC with
label l that is mapped to a grid gijk with label lijk, we then add the over-
lapping count among label ID l in the new view with lijk in the existing
aggregate point cloud. These counts between labels of the new view and
labels of the existing views form a correlation matrix.

3. We use best weighted bipartite graph matching treating the correlation ma-
trix as a weight matrix and merge the points and labels according to the
matching result.

6 Experiments

In this section, we present a series of experiments to evaluate performance of the
proposed objectness instance segmentation system. We first conduct extensive
ablation studies on synthetic data to validate both the data generation design
choices and the capability of the Mask R-CNN model. Then we evaluate the full
system on the real-world dataset generated by the multi-view instance matching
algorithm.

6.1 Implementation Details

We train the model using images of size 640×480 without resizing. We train on 2
GTX 1080Ti GPUs for 100k iterations, with a learning rate of 0.025 which is re-
duced by 10 times at the 40k iteration. We use Synchronized SGD with a weight
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decay of 0.0009 and a momentum of 0.9. Other hyper-parameters are set accord-
ing to the original paper [4]. To leverage features trained from a larger image
domain, the convolutional backbone ResNet-50 is pre-trained on ImageNet [21]
for 1000-way object classification. The whole model is then fine-tuned on our
generated synthetic dataset to learn general objectness instance segmentation.

6.2 Evaluation Metrics

We use the commonly average precision (AP) metric. Given an image, the model
outputs a number of mask predictions sorted by confidence values. A mask pre-
diction is considered as positive if its IoU (intersection-over-union) with the
ground truth is above a certain threshold. By choosing different number of
predictions, it gives a plot of the precision against the recall values. AP can
be viewed as finding the area under the precision-recall graph. We report the
COCO-style metrics [22] including AP50 (AP over IoU 0.5), AP75 (AP over IoU
0.75) and AP (average AP over IoUs ranging from 0.5 to 0.95 with a step of
0.05).

6.3 Data Generation Design Choices

With the ability of rapidly generating a large amount of labeled data, one may
ask questions of “how much data is needed?” and “which type of data is most
valuable?”. To that end, we compare the following six different strategies for the
data generation process:
a) single-object, where only one object instance is rendered for each image
b) multi-object, where multiple object instances are rendered for each image
c) multi-object with varying texture, where multiple object instances are

rendered with varying background textures for each image
d) multi-object with varying lighting, where multiple object instances are

rendered with varying lighting conditions for each image
e) multi-object with varying camera views, where multiple object in-

stances are rendered with varying camera perspective views for each image
f) multi-object with varying all, where multiple object instances are ren-

dered with varying all the above axes for each image.
For each of the strategy, we render a training set of 500 images and train a
model with RGB input only. For strategy a), we render 2500 images to roughly
match the number of instance annotations. Those models are then evaluated on
a common test set with 500 images generated with all variations.

Table 1 left compares the performance of different models trained with differ-
ent training sets on the common test set. We first observe that the most crucial
aspect of the data generation process is to have multiple objects in the scene.
If the model only sees single-object scenes in the training process, it can hardly
generalize to heavily occluded and cluttered multi-object cases. Furthermore,
we see that domain randomization on the proposed three axes all consistently
improves the generalization performance of the trained model and hence all of
them are necessary to generate a dataset with enough variety.
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training data a b c d e f

AP 0.89 21.26 34.80 33.03 36.57 46.78
AP50 0.99 36.97 57.98 51.47 58.02 70.66
AP75 0.99 21.62 36.10 35.96 39.25 50.49

input RGB depth fusion

AP 74.13 69.63 81.35
AP50 89.49 87.54 92.59
AP75 80.12 74.95 85.38

Table 1: Left: instance segmentation mask AP results on the common test set of models
trained using different data generation strategies. Right: instance segmentation mask
AP on the synthetic test set of models with different inputs. Units are percentage
numbers.

6.4 Evaluation on Synthetic Data

To evaluate the capability of the objectness Mask R-CNN model on synthetic
images, we formally create a larger training set consisting of 8000 images with
varying background texture, lighting and camera views. A test set consisting
of 2000 images is rendered separately. We compare Mask R-CNN trained on
RGB only, Mask R-CNN trained on depth only and Mask R-CNN trained on
both inputs. Table 1 right shows the results. We find that when only using
single input, Mask R-CNN performs significantly better when trained on RGB
data, indicating that in most cases the color textures provide more discriminative
information than the geometric structure. Moreover, RGB and depth fusion with
joint training achieves the best performance. Depth signal proves to be very
useful for extreme cases such as very dark lighting condition or heavily occluded
small objects. For example, we can observe from Figure 5 that the fusion method
usually constructs better-quality masks and reliably detects small object parts
even when they are heavily occluded. Also the high AP values in Table 1 indicate
that the proposed segmentation system can almost perfectly fit the synthetic
data.

RGB only depth only fusion

Fig. 5: Qualitative results of models with different inputs on two synthetic scenes.

6.5 Evaluation on Real-World Data

To construct the real-world dataset, we collect both the RGB and depth images
under 10 different manipulation scenes using the wrist mounted camera. The
ground-truth masks are then generated semi-automatically by the multi-view
instance matching algorithm in Section 5. The final dataset contains about 600
images. Figure 6 shows the object configurations of the different manipulation
scenes.

For training, we render a synthetic dataset consisting of 10000 images with
random object configurations from the 20 objects of the 3D database. Note that
the training object set is only a subset of the real-world objects. For example,
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scene 1 scene 2 scene 3 scene 4 scene 5

scene 6 scene 7 scene 8 scene 9 scene 10

Fig. 6: Object configurations of the multi-view real-world data.

Fig. 7: Qualitative results of RGB-only model on real-world scenes.

scenarios 8-10 in Figure 6 all contain novel objects not in the training object
database, including Red Bull bottles, Colgate toothpaste boxes, real bananas
and so on. This allows us to further evaluate the generalization ability of the
proposed segmentation system.

To overcome the data bias between synthetic data and real-world data, we
take the following data augmentation procedures. For the RGB data, we propose
to paste real-world background images to the background part of the original
synthetic image. This adapts the model to be resistant to real-world distractors
such as the gripper in the image corner. For the depth data, we add random noise
to the perfect synthetic depth image since real-world depth sensor observations
are usually noisy. Besides the aforementioned data augmentation, we do not use
any labeled real-world data in the training phase.

scene 1 2 3 4 5 6 7 8 9 10 all

AP
66.46 53.37 78.40 51.50 36.30 56.87 30.48 37.40 42.26 42.31 39.11
65.73 49.98 77.56 52.20 27.62 49.06 24.50 37.54 31.19 38.20 34.81

AP50
84.84 84.17 99.46 74.63 65.43 79.30 56.70 63.95 67.13 69.49 65.72
88.82 77.42 100 86.15 53.50 74.09 46.83 61.31 53.45 58.06 59.12

AP75
76.24 50.22 83.54 51.84 34.18 61.99 27.02 41.95 43.24 42.86 39.43
76.35 42.42 77.39 46.15 25.54 62.03 24.51 45.16 25.57 42.17 34.72

Table 2: Instance segmentation mask AP results of RGB-only (upper row) and
fusion (lower row) models on real-world data. Units are percentage numbers.
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To compare the generalization ability of models with different inputs, we eval-
uate both the RGB-only model and the fusion model on the real-world dataset.
Table 2 shows the quantitative results of the two models on the presented 10
manipulation scenes. We can observe that the overall AP scores of the two mod-
els both decrease compared to the performance on the synthetic dataset. This
is reasonable since the models are directly transferred without any adaptation.
Nevertheless, both models can still achieve a AP score over 30, which can be
considered to be pretty usable in most manipulation scenarios. From the per-
scene AP results, we also find that both models achieve high accuracy for known
object cases (scene 1-6), indicating that the proposed photorealistic rendering
pipeline minimizes the gap between simulator and reality. Scene 5 and 7 are two
challenging highly cluttered cases where different objects are heavily stacked to-
gether. Thus our models achieve significantly lower accuracy compared to the
simple cases. Note that scene 7 is harder since two adjacent homogeneous objects
may be falsely detected as one, making it difficult to determine the correct num-
ber of instances. As for the novel objects cases (scene 8-10), our model exhibits
very good generalization ability. Most of the instances can be correctly detected
and segmented even with occlusion. Figure 7 further shows the representative
qualitative results.

For the real-world evaluation, we observe that the RGB-only model performs
better than the fusion model on most cases. This is mainly due to the noisiness
of the depth information from the depth sensor. The real-world depth images
usually contain holes due to some reflective part of the objects. Although we try
to add simple random noise in the data augmentation process, the gap between
different depth signals still exists. Trying to simulate the real-world depth noise
in the rendering process is a possible extension to alleviate this problem.

7 Conclusion and Future Work

In this paper, we have explored the potential of utilizing synthetic data for real-
world robotic perception scenarios. We develop an automated rendering pipeline
to generate photorealistic images with pixel-level semantic annotations given the
scanned 3D CAD models. Large datasets can be easily collected without any hu-
man intervention. We propose an objectness instance segmentation system by
extending the Mask R-CNN framework for multi-modal input fusion. Extensive
experiments show that the proposed system exhibits good generalization per-
formance from synthetic data to real-world scenarios. For future work, we plan
to build a larger 3D object database and further improve the capability of the
proposed system.
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