
A Survey on Methods and Applications of Deep
Reinforcement Learning

Siyi Li
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
sliay@cse.ust.hk

Supervisor : Dit-Yan Yeung

December 28, 2016

Abstract

While perception tasks such as visual image classification and object detection
play an important role in human intelligence, the more sophisticated tasks built upon
them that involve decision and planning require an even higher level of intelligence.
The past few years have seen major advances in many low-level perceptual supervised
learning problems by using deep learning models. For higher-level tasks, however,
reinforcement learning offers a more powerful and flexible framework for the gen-
eral sequential decision making problem. While reinforcement learning has achieved
some successes in a variety of domains, their applicability has previously been limited
to domains with low-dimensional state spaces. To derive efficient and powerful feature
representations of the environment, it is naturally desirable to incorporate deep learn-
ing to the reinforcement learning domains, which we call deep reinforcement learning.
In this survey, we start from research on general reinforcement learning methods. We
then review the recent advances in deep reinforcement learning, including both the
methods and its applications on game playing and robotics control. Finally, we dis-
cuss some possible research issues.

i

Contents
1 Introduction 1

2 Deep Learning 2
2.1 Multilayer Perceptrons . 2
2.2 Convolutional Neural Networks . 3
2.3 Recurrent Neural Networks . 4

3 Reinforcement Learning 5
3.1 Markov Decision Processes . 5

3.1.1 Discounted Reward . 6
3.1.2 Average Reward . 7

3.2 MDP Algorithms . 8
3.2.1 Critic-Only Methods . 8
3.2.2 Actor-Only Methods . 10
3.2.3 Actor-Critic Methods . 12

4 Deep Reinforcement Learning Methods 16
4.1 Value-based Deep Reinforcement Learning 16

4.1.1 Deep Q-Networks . 16
4.1.2 Double Deep Q-Networks . 17
4.1.3 Prioritized Experience Replay . 18
4.1.4 Dueling Network Architectures 19
4.1.5 Deep Recurrent Q-Network . 20
4.1.6 Asynchronous Q-learning Variations 21
4.1.7 Discussion . 21

4.2 Policy-based Deep Reinforcement Learning 22
4.2.1 Asynchronous Advantage Actor-Critic 22
4.2.2 Trust Region Policy Optimization 22
4.2.3 Deep Deterministic Policy Gradient 24

4.3 Combining Deep Learning with Model-based Methods 26
4.3.1 Q-learning Variations . 26
4.3.2 Guided Policy Search . 27

5 Applications of Deep Reinforcement Learning 28
5.1 Deep Reinforcement Learning for Playing Games 28
5.2 Deep Reinforcement Learning for Robotics 29

6 Conclusions and Future Research 29

ii

1 Introduction
Deep learning allows computational models with multiple processing layers to automati-
cally learn representations of data with multiple levels of abstraction. These methods are
making major advances in solving fundamental problems that have resisted the artificial
intelligence community of many years. Deep learning has dramatically improved the state-
of-the-art in visual object recognition [21], object detection [7], speech recognition [14] and
many other domains such as drug analysis [28] and genomics [25]. The advances on these
fundamental tasks have laid the foundation for building higher-level artificial intelligence
system.

Ultimately, major progress in real artificial intelligence will come about through sys-
tems that combine representation learning with complex reasoning, where the latter one is
apparently beyond the capability of current deep learning methods. The restriction comes
from the formulation of supervised learning [24]. In supervised learning problems (includ-
ing classification and regression), a learner’s goal is to map observations (typically known
as features) to actions which are usually a discrete set of classes or real value. The design
and analysis of algorithms to address supervised learning problems rely on training and
testing instances as independent and identical distributed random variables. This means
that a decision made by the learner will have no impact on future observations. Therefore
supervised learning algorithms are built to operate in a world in which every decision has
no effect on the future data examples. Further, during a training phase an explicit answer
is provided to the learner, so that there is no ambiguity about action choices. However,
most real-world tasks involve an sequential interactive component and for some of them
it’s difficult even to define explicit labeled samples. These are major hurdles that hinder the
application of deep learning to more complex tasks.

On the other hand, reinforcement learning (RL) offers a more general and flexible
framework for a remarkable variety of problems. RL enables an agent to autonomously
discover an optimal behavior through trial-and-error interactions with its environment. In-
stead of providing explicit labeled samples to a problem as in supervised learning, in RL the
designer of a task provides feedback in terms of a scalar object function that measures the
one-step performance of the agent. RL defines a more general scope of problems by requir-
ing both interactive, sequential prediction as well as complex reward structures with only
scalar feedback. It is this distinction that enables so many relevant real world tasks to be
framed in these terms; it is this same distinction that makes the problem both theoretically
and computationally hard.

While RL has achieved some successes in a variety of domains, the traditional ap-
proaches have been limited to domains in which useful features are handcrafted, or to
domains with low-dimensional state spaces. To both derive the powerful feature repre-
sentation from high-dimensional sensory inputs and embrace the generalization ability on
complex tasks of RL framework, it is therefore a natural choice to combine recent deep
learning advances with RL. With the tight integration of deep learning and RL, many so-
phisticated tasks can be trained in an end-to-end manner.

Nevertheless, applying deep learning to RL is also confronted with some unique chal-
lenges. First, RL is known to be unstable or even diverge when nonlinear function approx-
imators such as neural networks are used. Traditional approaches find it hard to train such

1

complex policies. The second challenge is that deep learning requires a usually long, data-
hungry training paradigm, which is not always available in certain real-world applications
such as robotics. It is nontrivial to design such sample efficient algorithms with reasonable
time complexity.

In this survey, we aim to give a comprehensive overview of recent deep reinforcement
learning methods. We also present a wide variety of tasks to which deep reinforcement
learning has been successfully applied. The rest of the survey is organized as follows:
In Section 2, we provide a review of some basic deep learning models. Section 3 covers
the main concepts and techniques for RL. These two sections serve as the background
for deep reinforcement learning. Section 4 would survey the recent developments in deep
reinforcement learning methods and the relevant applications are discussed in Section 5.
Finally Section 6 discusses some future research issues and concludes the paper.

2 Deep Learning
When we look at the human brain, we see many levels of processing. It is believed that
each level is learning representations at increasing level of abstraction. This observation has
inspired the recent deep learning trend, which attempts to replicate this kind of architecture
in a computer. In this section, we give a brief review of deep learning, starting from the
simplest type of neural networks, multilayer perceptrons (MLPs), to several deep learning
model variants based on MLP.

2.1 Multilayer Perceptrons
A multilayer perceptron is a feedforward neural network model that maps sets of input data
to a set of appropriate outputs. Essentially an MLP consists of a sequences of parametric
nonlinear transformations. Consider for example a regression task which maps a vector of
M dimension to a vector of D dimension, where the input is denoted as a matrix X0 (0
means it is the 0-th layer of the MLP). The j-th row of X0, denotes as X0,j∗, is a vector
representing one data point. The target is denoted as Y. Then the problem of learning an
L-layer MLP can be formulated as the following optimization problem:

min
{Wl},{bl}

‖XL −Y‖2
F + λ

∑
l

‖Wl‖2
F

subject to Xl = σ(Xl−1Wl + bl), l = 1, . . . , L− 1

XL = XL−1WL + bL,

where || · ||2F denotes the squared Frobenius norm, σ(·) is a certain kind of element-wise
nonlinear activation function. By imposing the activation function, nonlinear transforma-
tions are introduced. Some common activations are the sigmoid function 1

1+exp(−x)
and the

hyperbolic tangent tanh(x). Here the parameters {Wl,bl} (l = 1, 2, . . . , L) are usually
learned using backpropagation and stochastic gradient descent (SGD). The key is to com-
pute the gradients of the object function with respect to Wl and bl. Let E denote the object

2

function value, the gradients can be computed recursively by the chain rule as follows:

∂E

∂XL

= 2(XL −Y)

∂E

∂Xl

= (
∂E

∂Xl+1

◦Xl+1 ◦ (1−Xl+1))Wl+1, l = 1, . . . , L− 1

∂E

∂Wl

= XT
l−1(

∂E

∂Xl

◦Xl ◦ (1−Xl)), l = 1, . . . , L

∂E

∂bl
= mean(

∂E

∂Xl

◦Xl ◦ (1−Xl), 1), l = 1, . . . , L,

where we omit the regularization parameters for simplicity and ◦ denotes the element-
wise product and mean(·, 1) is the matlab operation on matrices. In practice, we only use a
small part of data to compute the gradient for each update. This is called stochastic gradient
descent.

2.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) can be viewed as a variant of MLP, which is bio-
logically inspired by cat’s visual cortex [16]. The visual cortex contains a complex arrange-
ment of cells. Two basic cell types have been identified: Simple cells respond maximally to
specific edge-like patterns within their receptive field. Complex cells have larger receptive
fields and are locally invariant to the exact position of the pattern. CNNs model this kind
of animal visual perception by two key ingredients: convolution and pooling.

Convolution: CNNs take advantage of the fact that the input consists of images. Unlike
a regular MLP, the layers of CNNs have neurons arranges as 3D volumes (width, height,
depth). In a convolutional layer, the output is the result of the convolution of the input
and a linear filter, followed by some element-wise nonlinear transformation. Let X denote
the input 3D tensor and H denote the 2D output feature map. We use Xk to denote the
k-th matrix in the tensor X. With the linear filter W and b, the output feature map can be
obtained by 2D convolution operation as follows:

Hij = σ(
∑
k

(Wk ∗Xk)ij + b),

where ∗ denotes the 2D convolution operator. Note that with multiple different filters, we
can have multiple feature maps which can then be stacked together. The convolutional layer
with 4 input feature maps and 2 output feature maps is shown in Figure 1. Each neuron
is connected to only a local region of the input volume and the filter weights is shared
across the spatial locations. The local connectivity and parameter sharing scheme greatly
improves the scalability of CNNs.

Pooling: It is common to insert a pooling layer in-between successive convolutional
layers in CNNs. The intuition behind this is that once a feature has been detected, only
its approximate position relative to other features is relevant. The pooling layer operates
independently on every depth slice of the input volume and resizes it spatially, keeping
only the maximum value in that region. Pooling layers can not only control overfitting

3

Figure 1: A convolutional layer with 4 input feature maps and 2 output feature maps.

by reducing the amout of parameters but also provides spatial invariance. Note that the
pooling layer is optional in CNNs since in some applications local translational invariance
and downsampling are not needed.

To build a complete CNN, the input would alternate between several convolutional lay-
ers and pooling layers before going into an regular MLP for classification or regression
tasks. One recent famous example may be the AlexNet [21], which achieves a huge im-
provement over traditional methods on the image classification task.

2.3 Recurrent Neural Networks
When we read an article, we understand each word based on the understanding of previous
words. This is a recurrent process that needs memory. Traditional feedforward neural net-
works fail to do this since the temporal sequential information is not modeled explicitly. To
overcome this shortcoming, recurrent neural networks (RNNs) use recurrent computation
to imitate human memory.

Figure 2(left) shows the vanilla recurrent neural network architecture. The computation
of the hidden states ht depends on both the current input xt and the previous hidden states
ht−1. This loop structure enables short-term memory in RNNs. By unrolling the RNNs as
in Figure 2(right), the computation of output ot can be obtained as follows:

at = Wht−1 + Yxt + b

ht = σ(at)

ot = Vht + c,

where Y, W and V are the weight matrices for input-to-hidden, hidden-to-hidden, hidden-
to-output connections, respectively and b, c are the corresponding biases. Note that RNNs
adopt weight sharing so the above parameters are shared across different instances of the
units corresponding to different time steps. The weight sharing scheme is important for
processing variable-length sequences.

Similar to feedforward neural networks, the parameters are trained by a generalized
backpropagation algorithm called backpropagation through time (BPTT) [52].

The problem with the vanilla RNN is that the gradients propagated over many time
steps are prone to vanish or explode [3], which makes it very difficult for RNNs to model
long-term dependencies in practice. To address this problem, several gated RNN variants
are proposed to capture long-range dependencies. Long short-term memory (LSTM) [15]
has proven to be powerful and stable in practice.

4

xx
WW

zz
VV

oo

xtxt

htht

otot

WW

Figure 3: On the left is a conventional feedforward neural network with one hidden layer,
where x is the input, z is the hidden layer, and o is the output, W and V are the corre-
sponding weights (biases are omitted here). On the right is a recurrent neural network with
input {xt}Tt=1, hidden states {ht}Tt=1, and output {ot}Tt=1.

x1x1

h1h1

o1o1

YY

VV

x2x2

h2h2

o2o2

YY

VV
.

xTxT

hThT

oToT

YY

VV
WW WW

Figure 4: An unrolled RNN which is equivalent to the one in Figure 3(right). Here each
node (e.g., x1, h1, or o1) is associated with one particular time instance.

max-pooling with a 3× 3 region would be a downsampled feature map of size 2× 3. Each
entry of the downsampled feature map is the maximum value of the corresponding 3 × 3
region in the 6 × 9 feature map. Max-pooling layers can not only reduce computational
cost by ignoring the non-maximal entries but also provides translation invariance.

Putting it all together: Usually to form a complete and working CNN, the input would
alternate between L convolutional layers and L max-pooling layers before going into an
MLP for tasks like classification or regression. One famous example may be the LeNet-
5 [35], which alternates between 2 convolutional layers and 2 max-pooling layers before
going into a fully connected MLP for target tasks.

2.4 Recurrent Neural Network
When we read an article, we would normally take in one word at a time and try to un-
derstand the current word based on previous words. This is a recurrent process that needs
short-term memory. Unfortunately conventional feedforward neural networks like the one
shown in Figure 3(left) fail to do so. For example, imagine we want to constantly predict
the next word as we read an article. Since the feedforward network only computes the out-
put o as Vq(Wx) where the function q(·) denotes element-wise nonlinear transformation,
it is unclear how the network could naturally model the sequence of words to predict the
next word.

2.4.1 Vanilla Recurrent Neural Network

To solve the problem we need a recurrent neural network [2] instead of a feedforward one.
As shown in Figure 3(right), the computation of the current hidden states ht depends on
the current input xt (e.g., the t-th word) and the previous hidden states ht−1. This is why

6

xx
WW

zz
VV

oo

xtxt

htht

otot

WW

Figure 3: On the left is a conventional feedforward neural network with one hidden layer,
where x is the input, z is the hidden layer, and o is the output, W and V are the corre-
sponding weights (biases are omitted here). On the right is a recurrent neural network with
input {xt}Tt=1, hidden states {ht}Tt=1, and output {ot}Tt=1.

x1x1

h1h1

o1o1

YY

VV

x2x2

h2h2

o2o2

YY

VV
.

xTxT

hThT

oToT

YY

VV
WW WW

Figure 4: An unrolled RNN which is equivalent to the one in Figure 3(right). Here each
node (e.g., x1, h1, or o1) is associated with one particular time instance.

max-pooling with a 3× 3 region would be a downsampled feature map of size 2× 3. Each
entry of the downsampled feature map is the maximum value of the corresponding 3 × 3
region in the 6 × 9 feature map. Max-pooling layers can not only reduce computational
cost by ignoring the non-maximal entries but also provides translation invariance.

Putting it all together: Usually to form a complete and working CNN, the input would
alternate between L convolutional layers and L max-pooling layers before going into an
MLP for tasks like classification or regression. One famous example may be the LeNet-
5 [35], which alternates between 2 convolutional layers and 2 max-pooling layers before
going into a fully connected MLP for target tasks.

2.4 Recurrent Neural Network
When we read an article, we would normally take in one word at a time and try to un-
derstand the current word based on previous words. This is a recurrent process that needs
short-term memory. Unfortunately conventional feedforward neural networks like the one
shown in Figure 3(left) fail to do so. For example, imagine we want to constantly predict
the next word as we read an article. Since the feedforward network only computes the out-
put o as Vq(Wx) where the function q(·) denotes element-wise nonlinear transformation,
it is unclear how the network could naturally model the sequence of words to predict the
next word.

2.4.1 Vanilla Recurrent Neural Network

To solve the problem we need a recurrent neural network [2] instead of a feedforward one.
As shown in Figure 3(right), the computation of the current hidden states ht depends on
the current input xt (e.g., the t-th word) and the previous hidden states ht−1. This is why

6

Figure 2: On the left is a recurrent neural network with input {xt}Tt=1, hidden states {ht}Tt=1,
and output {ot}Tt=1. On the right is an unrolled computation graph, where each node is
associated with one particular time step.

3 Reinforcement Learning
One of the fundamental problems in artificial intelligence and control is that of sequential
decision making in stochastic problems. Such problems can be formalized in the Markov
decision process (MDP) framework. Briefly, MDP models a system that we are interested
in controlling as being in some state at each step in time. A large and diverse set of prob-
lems can be modeled using the MDP formalism. Reinforcement learning (RL) offers a
powerful set of tools for solving problems posed in MDP formalism and hence provides a
more general framework than supervised learning. In this section, we begin by formalizing
MDPs and then review some standard algorithms for solving MDPs.

3.1 Markov Decision Processes
Markov decision processes provide a formalism for reasoning about planning and acting in
dynamics systems in the face of uncertainty. An MDP is a tuple (S,A, f, R) consisting of:
• S: The state space, a set of possible states in the world.
• A: The action space, a set of possible actions from which we may choose on each

time step.
• f : S × A × S 7→ [0,∞): The state transition probability density function. For

each state s ∈ S and action a ∈ A, this gives the distribution over to which state we
will randomly transition if we take action a in state s.
• R: S ×A× S 7→ R: The reward function.

In this survey, only stationary MDPs are considered, i.e., the elements of the tuple (S,A, f, R)
do not change over time.

Events in an MDP proceed as follows. The stochastic process is controlled by the
state transition probability density function. Here we adopt the probability density function
notation to extend to continuous state and action spaces. Since state space is continuous, it
is only possible to define a probability of reaching a certain state region (the probability of
reaching a particular state is zero.). The probability of reaching a state sk+1 in the region
Sk+1 ⊆ S from state sk after applying action ak is

P (sk+1 ∈ Sk+1|sk, ak) =

∫
Sk+1

f(sk, ak, s
′)ds′.

5

After each transition to state sk+1, the agent receives an immediate reward

rk = R(sk, ak, sk+1),

which depends on the previous state, the current state, and the action taken. Note that the
reward function R is assumed to be bounded by Rmax. The action taken in a state sk is
drawn from a stochastic policy π: S ×A 7→ [0,∞).

The goal of reinforcement learning is to find the policy π which maximizes the expected
return J , which corresponds to the expected value of a certain function g of the immediate
rewards received following the policy π. This expected return is the cost-to-go function

J(π) = E{g(r0, r1, . . .)|π}.
There are different models of optimal behavior [17] which result in different definitions of
the expected return. In most cases, the function g is either the discounted sum of rewards
or the average reward received, as explained next.

3.1.1 Discounted Reward

In the discounted reward setting, the expected return J is equal to the expected value of the
discounted sum of rewards when starting from an initial state s0 ∈ S drawn from an initial
state distribution s0 ∼ d0(·). This is also called the discounted return

J(π) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣ d0, π

}

=

∫
S
dπ(s)

∫
A
π(s, a)

∫
S
f(s, a, s′)R(s, a, s′)ds′dads,

(1)

where dπ(s) =
∑∞

k=0 γ
kp(sk = s|d0, π) is the discounted state distribution under the policy

π, and γ ∈ [0, 1) denotes the reward discount factor. Here p(sk = s) denote the probability
density function.

Almost all reinforcement learning algorithms involve estimating the cost-to-go function
J for a given policy π. This procedure is called policy evaluation. The resulting estimate
of J is called the value function and two definitions exist for it. The state value function

V π(s) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣ s0 = s, π

}
(2)

only depends on the state and assume the policy π is followed starting from this state. The
state-action value function

Qπ(s, a) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣ s0 = s, a0 = a, π

}
(3)

depends on both the state and the action, and treats the action a as a free variable. Once the
first transition onto the next state has been made, π governs the rest of the action selection.
The relationship between these two definitions for the value function is given by

V π(s) = E {Qπ(s, a)| a ∼ π(s, ·)}

6

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy particular recursive relationships [44]. For the
state value function, it is

V π(s) = E {R(s, a, s′) + γV π(s′)} , (4)

with a drawn from the probability density function π(s, ·) and s′ drawn from f(s, a, ·). For
the state-action value function, the recursive form is

Qπ(s, a) = E {R(s, a, s′) + γQπ(s′, a′)} , (5)

with s′ drawn from the probability density function f(x, u, ·) and a′ drawn from the distri-
bution π(s′, ·). These recursive forms are called Bellman expectation equations.

Value functions define a partial ordering over policies. There is always at least one
policy that is better than or equal to all other policies. This is an optimal policy. Optimality
for both the state value function V π and the state-action value function Qπ is governed by
the Bellman optimality equation. Denoting the optimal state value function with V ∗(s) and
the optimal state-action value function withQ∗(s, a), the corresponding Bellman optimality
equations for the discounted reward setting are

V ∗(s) = max
a

E {R(s, a, s′) + γV ∗(s′)} , (6a)

Q∗(s, a) = E
{
R(s, a, s′) + max

a′
γQ∗(s′, a′)

}
. (6b)

3.1.2 Average Reward

As an alternative to the discounted reward setting, the average reward case are often more
suitable in a robotic setting as we do not have to choose a discount factor and we do not
have to explicitly consider time in the derivation. In this setting, a distribution d0 does not
need to be chosen, under the assumption that the process is ergodic [44] and thus that J
does not depend on the starting state. The cost-to-go function is now

J(π) = lim
n→∞

1

n
E

{
n−1∑
k=0

rk

∣∣∣∣∣ π
}

=

∫
S
dπ(s)

∫
A
π(s, a)

∫
S
f(s, a, s′)R(s, a, s′)ds′dads.

(7)

Equation (7) is very similar to (1), except that the definition for the state distribution
changed to dπ(s) = limk→∞ p(sk = s, π). For a given policy, the state value function
V π(s) and state-action value function Qπ(s, a) are then defined as

V π(s) = E

{ ∞∑
k=0

(rk − J(π))

∣∣∣∣∣ s0 = s, π

}
,

Qπ(s, a) = E

{ ∞∑
k=0

(rk − J(π))

∣∣∣∣∣ s0 = s, a0 = a, π

}
.

7

The Bellman expectation equations for the average reward — in this case also called the
Possion equations [4] — are

V π(s) + J(π) = E {R(s, a, s′) + V π(s′)} , (8a)
Qπ(s, a) + J(π) = E {R(s, a, s′) +Qπ(s′, a′)} . (8b)

Note that (8a) and (8b) require the value J(π), which is unknown and hence needs to be
estimated in some way. The Bellman optimality equations, describing an optimum for the
average reward case, are

V ∗(s) + J∗ = max
a

E {R(s, a, s′) + V ∗(s′)} , (9a)

Q∗(s, a) + J∗ = E
{
R(s, a, s′) + max

a′
Q∗(s′, a′)

}
, (9b)

where J∗ is the optimal average reward as defined by (7) when an optimal policy π∗ is used.

3.2 MDP Algorithms
Over the course of time, several types of RL algorithms have been introduced, and they can
be divided into three groups [20]: critic-only, actor-only, and actor-critic methods, where
the words actor and critic are synonyms for the policy and value function, respectively. We
now briefly review some standard algorithms from the above three categories. Throughout
this survey, we assume the discounted reward setting without special explanation, though
many similar derivations exist for the average reward setting.

3.2.1 Critic-Only Methods

Since a value function defines an optimal policy, many algorithms attempt to find either V ∗

or Q∗. A straightforward way of deriving a policy in critic-only methods is by selecting
greedy actions: actions for which the value function indicates that the expected return is
the highest. Specifically, π∗ is given by either of the following equations:

π∗(s) = arg max
a

E {R(s, a, s′) + γV ∗(s′)} (10a)

π∗(s) = arg max
a

Q∗(s, a). (10b)

Note that while knowing Q∗ can easily compute the optimal policy, finding optimal policy
from V ∗ is slightly more complicated and also requires knowledge of the state transition
density function f(s, a, s′) (required to compute the expectation).

A wide variety of value function based RL algorithms have been developed and can
be split mainly into three classes: (i) dynamic programming-based optimal control ap-
proaches such as policy iteration and value iteration, (ii) rollout-based Monte Carlo meth-
ods and (iii) temporal difference (TD) learning methods such as TD(λ), Q-learning [51],
and SARSA (State-Action-Reward-State-Action) [38].

8

Dynamic Programming-Based Methods Dynamic programming-based methods, re-
quire a model of the state transition density function f(s, a, s′) and the reward function
R(s, a, s′) to calculate the value function. The model does not necessarily need to be pre-
determined but can also be estimated from data. Such methods are called model-based.
Typical methods include policy iteration and value iteration.

Policy iteration alternates between the two phases of policy evaluation and policy im-
provement. Policy evaluation determines the value function for the current policy. Each
state is visited and its value is updated based on equation (4). This procedure is repeated
until the value function converges to a fixed point. Policy improvement then greedily se-
lects the best action in every state according to the above estimated value function. The
two steps of policy evaluation and policy improvement are iterated until the policy does not
change any longer.

Policy iteration only updates the policy once after the policy evaluation step has con-
verged. In contrast, value iteration combines the steps of policy evaluation and policy
improvement by directly updating the value function every time a state is updated.

Monte Carlo Methods Monte Carlo methods are typically model-free RL algorithms in
the sense that they do not need an explicit state transition function. They use sampling to
estimate the value functions. By performing rollouts on the current policy, the transitions
and rewards are kept track of and are used to form unbiased value function estimates.
However, such methods typically suffer the high variance problem.

Temporal Difference Learning Methods TD learning methods generally have a lower
variance in the estimates of the value function, compared to Monte Carlo methods. On the
other hand, estimates of value function in TD methods are biased. Unlike Monte Carlo
methods, they do not have to wait until an estimate of the return is available (i.e., at the end
of the episode) to update the value function. Instead, they use temporal errors, which are
the differences between the old estimate and a new estimate of the value function. These
updates are done iteratively and, in contrast to dynamic programming-based methods, only
take into account the sampled successor states rather than the complete distributions over
successor states. TD learning methods are also model-free.

For example, given a transition tuple (s, a, s′), the state value function could be updated
iteratively by

V ′(s) = V (s) + α (R(s, a, s′) + γV (s′)− V (s)) ,

where V (s) is the old estimate of the value function, V ′(s) is the updated one, and α is the
learning rate. The equivalent TD learning algorithm for state-action value function is

Q′(s, a) = Q(s, a) + α (R(s, a, s′) + γQ(s′, a′)−Q(s, a)) ,

where Q(s, a) is the old estimate of the state-action value function, Q′(s, a) is the up-
dated one. This algorithm is known as SARSA, which is an on-policy method. On-policy
methods collect sample information about the environment using the current policy while
off-policy methods learn independent of the employed policy. The off-policy variant is
called Q-learning, with the updates

Q′(s, a) = Q(s, a) + α
(
R(s, a, s′) + γmax

a′
Q(s′, a′)−Q(s, a)

)
. (11)

9

For discrete spaces, the value function can be represented by tables. For large or con-
tinuous spaces, function approximation is employed to find a lower dimensional represen-
tation that matches the real value function as closely as possible. While selecting greedy
actions in discrete action space is rather straightforward, it can be computationally intensive
when the action space is continuous. Therefore critic-only methods usually discretize the
continuous action space, after which the optimization over the action space becomes a mat-
ter of enumeration. Obviously, this approach undermines the ability of using continuous
actions.

3.2.2 Actor-Only Methods

Actor-only methods typically work with a parameterized family of policies over which
optimization procedures can be used directly. The benefit of a parameterized policy is
that a spectrum of continuous actions can be generated. These methods are called policy
gradient methods (for example, the SRV [11] and REINFORCE algorithms [53]) and do
not use any form of a stored value function. The policy parameterizations are directly
optimized by the cost defined in (1) or (7).

A policy gradient method is generally obtained by parameterizing the policy π by the
parameter vector θ ∈ Rp. The expected returns defined in (1) and (7) are in fact functions
of θ. Assuming the parameterization is differentiable with respect to θ, the gradient of the
cost function with respect to θ is described by

∇θJ(θ) =
∂J

∂πθ

∂πθ
∂θ

. (12)

By using standard optimization methods, a locally optimal solution of the cost J can be
found by the following iterative updates:

θk+1 = θk + αa,k∇θJ(θk), (13)

where αa,k is the learning rate for the actor. If the gradient estimate is unbiased and learning
rates fulfill ∞∑

k=0

αa,k =∞,
∞∑
k=0

α2
a,k <∞,

then the learning process is guaranteed to converge to at least a local minimum. The main
problem in policy gradient methods is obtaining a good estimator of the policy gradient
∇θJ(θ). The most prominent approaches are finite-difference and likelihood ratio meth-
ods [48, 8], the latter more well known as REINFORCE methods in RL.

Finite-Difference Methods Finite-difference methods are among the oldest policy gradi-
ent approaches dating back to 1950s. The idea is straightforward to understand. The policy
parameterization is varied by small increments ∆θi and for each policy parameter parame-
terization θk + ∆θi rollouts are performed which generate estimates Ĵi = J(θk + ∆θi) and
∆Ĵi ≈ J(θk + ∆θi) − Jref of the expected return. There are different ways of choosing

10

the reference value Jref , e.g. forward-difference estimators as Jref = J(θk) and central-
difference estimators as Jref = J(θk−∆θi). The gradient can now be estimated by solving
the following linear regression problem[

∇θJ
T , Jref

]
=
(
∆ΘT∆Θ

)−1
∆ΘT Ĵ,

where

∆Θ =

[
∆θ1, · · · , ∆θI

1, · · · , 1

]T
, Ĵ =

[
Ĵ1, · · · , ĴI

]
,

denote the I samples. This approach is very straightforward and even applicable to policies
that are not differentiable. However, it is usually considered to be very noisy and ineffi-
cient. Also, they do not work for parameter spaces of very high dimensionality (e.g., deep
learning models).

Likelihood Ratio Methods Likelihood ratio methods are driven by a different important
insight. Assume that trajectories τ are generated from a system by rollouts, i.e., τ ∼
pθ(τ) = p(τ |θ) with the return of a trajectory Jτ =

∑H
k=0 γ

krk. From the view of the
trajectories, the expected return of the policy can be written as an expectation over all
possible trajectories T:

J(θ) =

∫
T
p(τ |θ)dτ.

Subsequently, we can rewrite the gradient by

∇θJ(θ) =

∫
T
∇θp(τ |θ)Jτdτ

=

∫
T
p(τ |θ)∇θ log p(τ |θ)Jτdτ

= E {∇θ log p(τ |θ)Jτ} .

If we have a stochastic policy πθ(s, a), the derivative ∇θ log p(τ |θ) can be computed with-
out knowledge of the generating distribution p(τ |θ) as

p(τ |θ) = p(s0)
H∑
k=0

f(sk, ak, sk+1)πθ(sk, ak)

implies that

∇θ log p(τ |θ) =
H∑
k=0

∇θ log πθ(sk, ak),

i.e., the derivatives with respect to the dynamics system do not have to be computed. Fi-
nally, the policy gradient can be estimated as

∇θJ(θ) = E

{(
H∑
k=0

∇θ log πθ(sk, ak)

)
Jτ

}
. (14)

11

If we now take into account that rewards at the beginning of a trajectory cannot be caused
by actions at the end of a trajectory, we can replace the return of the trajectory Jπ by the
state-action value function Qπ(s, a) and get [33]

∇θJ(θ) = E

{
H∑
k=0

∇ log πθ(sk, ak)Q
π(sk, ak)

}
, (15)

which is equivalent to the policy gradient theorem [45]. In practice, it is often advisable
to subtract a reference Jb, also called the baseline, from the return of trajectory Jπ or
the state-action value function Qπ(s, a) respectively to get better estimates with smaller
variance (though still large).

A major drawback of the above actor-only approach is that the estimated gradient may
have a large variance [45, 37].

3.2.3 Actor-Critic Methods

Actor-critic methods combine the advantages of actor-only and critic-only methods. While
the parameterized actor brings the ability of producing continuous actions without the need
for optimization procedures on a value function, the critic supplies the actor with low-
variance policy gradient estimates. The role of the critic is to evaluate the current policy
prescribed by the actor. In principle, this evaluation can be done by any policy evaluation
methods such as TD(λ). The critic approximates and updates the value function using
samples. The value function is then used to update the actor’s policy parameters in the
direction of policy improvement. In actor-critic methods, the policy is not inferred from
the value function by using (10b) but generated by the actor instead.

Many actor-critic algorithms rely on the policy gradient theorem, a result obtained si-
multaneously in [45, 20], proving that an unbiased estimate of the policy gradient (12) can
be obtained from experience using a value function approximator satisfying certain proper-
ties. In what follows we first introduce the policy gradient theorem, as well as compatible
function approximators, and then formulate the standard actor-critic algorithm. Finally, we
also briefly describe the actor-critic methods in the natural gradient setting. For a more
comprehensive survey on actor-critic methods, reader are referred to [33, 9].

Policy Gradient Theorem Consider the case of an approximated stochastic policy πθ,
but with exact state-action value function Qπ, the policy gradient theorem is as follows.

Theorem 1 (Policy Gradient): For any MDP, in either the discounted reward or average
reward setting, the policy gradient is given by

∇θJ(θ) =

∫
S
dπ(s)

∫
A
∇θπθ(s, a)Qπ(s, a)dads

with dπ(s) defined for the appropriate reward setting.

The above theorem shows the relationship between the policy gradient∇θJ(θ) and the
critic function Qπ(s, a). For most applications, the state-action space is continuous and

12

thus infinite, which means that it is essential to approximate the state-action value function.
The result in [45, 20] also shows that Qπ(s, a) can be approximated with a certain function
hw : S × A 7→ R, parameterized by w, without affecting the unbiasedness of the policy
gradient estimate.

Theorem 2 (Policy Gradient with Function Approximation): If the following two condi-
tions are satisfied:

1. Function approximator hw is compatible to the policy

∇whw(s, a) = ∇θ log πθ(s, a),

2. Function approximator hw minimizes the following mean-squared error from the ex-
act state-action value function Qπ(s, a)

ε =

∫
S
dπ(s)

∫
A
πθ(s, a)

{
(Qπ(s, a)− hw(s, a))2

}
,

where πθ(s, a) denotes the stochastic policy, parameterized by θ, then

∇θJ(θ) =

∫
S
dπ(s)

∫
A
∇θπθ(s, a)hw(s, a)dads. (16)

As discussed in [45], using the compatible function approximation hw = wT∇θ log πθ(s, a)
(∇θ log πθ(s, a) are known as compatible features) gives∫

A
πθ(s, a)hw(s, a)da = wT∇θ

∫
A
πθ(s, a)da = 0.

This shows that the expected value of hw(s, a) under the the policy πθ is zero for each
state. In this sense, it is better to think of hw as an approximation of the advantage func-
tion Aπ(s, a) = Qπ(s, a) − V π(s). This means that using the above hw(s, a) results in
an approximator that can only represent the relative value of an action a in some state s.
Because of this difference, the policy gradient estimate produced by just the compatible
approximation will still have a high variance. To lower the variance, extra features have to
be added to model the difference between the advantage function Aπ(s, a) and the state-
action value function Qπ(s, a), i.e., the value function V π(s). This is often referred to as a
reinforcement baseline. The policy gradient theorem actually generalizes to the case where
a state-dependent baseline function is taken into account. Equation (16) is now

∇θJ(θ) =

∫
S
dπ(s)

∫
A
∇θπθ(s, a) [hw(s, a) + b(s)] dads. (17)

Standard Gradient Actor-Critic Algorithms For both reward settings, the value func-
tion is parameterized by the parameter vector w ∈ Rq. This will be denoted with Vw(s) or
Qw(s, a). If the parameterization is linear, the features will be denoted as φ, i.e.,

Vw(s) = wTφ(s) or Qw(s, a) = wTφ(s, a). (18)

13

The stochastic policy π is parameterized by θ ∈ Rp and is denoted as πθ(s, a). If the
policy is denoted as πθ(s), it is deterministic and a direct mapping from states to actions
a = πθ(s).

The critic is typically updated with TD learning methods. Using the function approx-
imation for the critic and a transition sample (sk, ak, rk, sk+1), the TD error is estimated
as

δk = rk + γVwk(sk+1)− Vwk(sk). (19)

The most standard way of updating the critic is to apply gradient descent to minimize the
squared TD error

wk+1 = wk + αc,kδk∇wVwk(sk), (20)

where αc,k is the learning rate for the critic. This TD method is also known as TD(0)
learning, as no eligibility traces are used. The extension to the use of eligibility traces,
resulting in TD(λ) methods and is explained next. Eligibility traces offer a way to assigning
credit to states or state-action pairs visited several steps earlier. The eligibility trace vector
at time instant k is denoted as zk ∈ Rq and the update equation is

zk = λγzk−1 +∇wVwk(sk).

It decays with time by a factor λγ, where λ ∈ [0, 1) is the trace decay rate. By using the
eligibility trace vector zk, the update of the critic (20) becomes

wk+1 = wk + αc,kδkzk.

The state-action value function Qw(s, a) can be updated in a similar manner.
The actor is updated with the estimated policy gradient as in (13). Based on the policy

gradient theorem, to obtain an unbiased policy gradient estimate of ∇θJ(θk), we actually
need to learn an compatible function approximator hw(s, a) and the parameter w must be
determined by the linear regression problem that estimates Qπ(s, a). In practice, the latter
condition is usually relaxed and TD learning method are applied to learn the value function
more efficiently.

For example, a TD(0) actor-critic algorithm can be described as follows:

δk = rk + γVwk(sk+1)− Vwk(sk), (21a)
wk+1 = wk + αc,kδk∇wVwk(sk), (21b)
θk+1 = θk + αa,kδk∇θ log πθ(sk, ak). (21c)

This approach only requires one set of critic parameters Vw. Alternatively, we can also
estimate both the state value function V π(s) and the state-action value function Qπ(s, a)
by using two function approximators. While each value function is updated by TD learning,
the actor can be updated with the policy gradient estimate given by the advantage function

A(sk, ak) = QwQ(sk, ak)− Vwv(sk),
θk+1 = θk + αa,kA(sk, ak)∇θ log πθ(sk, ak).

14

Natural Gradient Actor-Critic Algorithms One of the main reasons for using policy
gradient methods is that we intend to make a small change ∆θ to the policy πθ while im-
proving the policy. Standard gradients methods use the Euclidean metric of

√
∆θT∆θ,

then the gradient is different for every parameterization θ of the policy πθ, even if these pa-
rameterizations are related to each other by a linear transformation [18]. The performance
of standard gradients methods thus rely heavily on the choice of a coordinate system over
which the cost function is defined. This problem poses the question whether we can achieve
a covariant gradient descent, i.e., gradient descent with respect to an invariant measure of
the closeness between the current policy and the updated policy based upon the distribution
of the paths generated by each of these [33]. In statistics, a variety of distance measures for
the closeness of two distributions (e.g., p(τ |θ) nad p(τ |θ+ ∆θ)) have been suggested, e.g.,
the Kullback-Leibler (KL) divergence DKL(p(τ |θ)||p(τ |θ + ∆θ). The KL divergence can
be approximated by the second-order Taylor expansion, i,e, by

DKL(p(τ |θ)||p(τ |θ + ∆θ)) ≈ 1

2
∆θTFθ∆θ,

where
Fθ =

∫
T
p(τ |θ)∇θ log p(τ |θ)∇θ log p(τ |θ)Tdτ

= E
{
∇θ log p(τ |θ)∇θ log p(τ |θ)T

} (22)

is known as the Fisher information matrix. Suppose we fix the amount of change in our
policy using the step-size ε, we then have a restricted step-size gradient descent problem [6].
The optimization problem is formulated as follows:

max
∆θ

J(θ + ∆θ) ≈ J(θ) + ∆θT∇θJ(θ)

subject to ε = DKL(p(τ |θ)||p(τ |θ + ∆θ)) ≈ 1

2
∆θTFθ∆θ

The solution is given by
∆θ = αnF

−1
θ ∇θJ(θ), (23)

where αn =
[
ε(∇θJ(θ)TF−1

θ ∇θJ(θ))−1
]1/2 [35]. The direction ∆θ is called the natural

gradient ∇̃θJ(θ) = ∆θ/αn. It is not necessary to use the learning rate αn as it does not
affect the gradient direction.

The Fisher information matrix of paths can be estimated as in [1, 34]

Fθ =

∫
S
dπ(s)

∫
A
πθ(s, a)∇θ log πθ(s, a)∇θ log πθ(s, a)Tdads. (24)

If a compatible function hw = wT∇θ log πθ(s, a) is used to approximate the value function,
then the natural policy gradient is in fact the compatible feature parameter w, i.e.,

∇̃θJ(θ) = w. (25)

Consequently, we can use a natural gradient without explicitly calculating the Fisher infor-
mation matrix.

15

The strongest theoretical advantage of natural policy gradient methods is that the per-
formance no longer depends on the parameterization of the policy and it is therefore safe to
use for arbitrary policies. In practice, the learning process converges significantly faster in
most practical cases and requires less manual parameter tuning of the learning algorithm.

4 Deep Reinforcement Learning Methods
With the background on deep learning and RL, we are now ready to introduce some con-
crete examples of deep reinforcement learning. To bring the success of deep learning to
the RL domains, one question is to which part we can apply deep learning in the RL for-
mulation. From the formulation of MDP in Section 3.1, it seems natural to use deep neural
networks as function approximators for either the value function or the policy, which can
be thought as value-based and policy-based approaches, respectively. In this section, we
will introduce both the value-based and policy-based deep reinforcement learning meth-
ods. Some recent attempts to combine deep learning with model-based RL methods are
also discussed.

4.1 Value-based Deep Reinforcement Learning
Value-based approaches, such as Q-learning, use a state-action value function and no ex-
plicit function for the policy. It is usually adopted in discrete action spaces since the equa-
tion (10b) can be then solved by simple enumeration. These methods learn the optimal
value function by a function approximator. While it is straightforward to use a deep neural
network as a function approximator, in practice naive Q-learning often oscillates or even
diverges with neural networks. Much efforts have been devoted to address these instability
issues in RL when a nonlinear function approximator is used.

4.1.1 Deep Q-Networks

RL is known to be unstable or even to diverge when a nonlinear function approximator
such as a neural network is used to represent the state-action function Q(s, a). This in-
stability has several causes: the correlations in the sequence of observations, the fact that
small updates to Q(s, a) may significantly change the policy and therefore change the data
distribution, and the correlations between the current values Q(s, a) and the target values
r+γmaxa′ Q(s′, a′). To address these issues, a novel variant of Q-learning, called deep Q-
network (DQN) is proposed in [30]. DQN uses two key ideas. First, a biologically inspired
mechanism termed experience replay is used to randomize the data, thereby removing the
correlations in the observation sequence and smoothing over changes in the data distri-
bution. Second, DQN use an iterative update that adjusts the state-action value Q(s, a)
towards target values that are only periodically updated, thereby reducing correlations with
the target.

Model Architecture DQN parameterizes an approximate Q-value function Qwi(s, a) us-
ing the deep convolutional neural network, where wi are the parameters of the Q-network

16

at iteration i. There are several possible ways of parameterizing the Q-value function using
a neural network. Previous approaches [36, 23] use both the states and actions as inputs to
the neural network. The main drawback of this type of architecture is that a separate for-
ward pass is required to compute the Q-value of each action, resulting in a cost that scales
linearly with the number of actions. DQN instead use an architecture in which there is a
separate output unit for each action and only the state representation is an input to the neu-
ral network. The outputs correspond to the predicted Q-values of the individual actions for
the input state. The main advantage of the proposed architecture is the ability to compute
Q-values for all possible actions in a given state with only a single forward pass through
the network.

Experience Replay DQN uses a technique known as experience replay in which the
agent’s experiences at each time step, et = (st, at, rt+1, st+1), are stored in a data set Dt =
{e1, e2, · · · , et}, pooled over many episodes (where the end of en episode occurs when
a terminal state is reached) into a replay memory. During learning, Q-learning updates
are then applied on samples (or minibatches) of experience (s, a, r, s′) ∼ U(D), drawn
uniformly at random from the replay memory.

Target Network A Q-network can be trained by adjusting the parameters wi at iteration
i to reduce the mean-squared error in the Bellman equation. Here introduces the other
modification in DQN to standard online Q-learning, which is to use a separate network for
generating the target values in the Q-learning update. Specifically, the Q-learning update at
iteration i uses the following loss function:

Li(wi) = E(s,a,r,s′)∼U(D)

{(
r + γmax

a′
Qŵi(s

′, a′)−Qwi(s, a)
)2
}
, (26)

in which wi are the parameters of the Q-network at iteration i and ŵi are the target network
parameters used to compute the target at iteration i. The target network parameters ŵi
are only updated with the Q-network parameters (wi) every C steps and are held fixed
between individual updates. This modification makes the algorithm more stable compared
to standard online Q-learning. Generating the targets using an older set of parameters adds
a delay between the time an update to Q-network is made and the time the update affects
the target values , making divergence or oscillations much more unlikely.

DQN is able to learn value functions using large, nonlinear function approximators in
a stable and robust way. In the following text, we provide several extensions of DQN from
different perspectives.

4.1.2 Double Deep Q-Networks

The Q-learning algorithm is known to overestimate state-action values under certain con-
ditions. Formally, the max operator in both standard Q-learning and DQN, i.e., in equation
(11) and (26), uses the same values both to select and evaluate an action. This makes it
more likely to select overestimated values, resulting in overoptimistic value estimates. To
prevent this, the selection can be decoupled from the evaluation.

17

With this motivation, an improved version of DQN, called Double DQN (DDQN) algo-
rithm is proposed in [47]. DDQN proposes to evaluate the greedy policy according to the
online network, but to use the target network to estimate its value. Its update is the same as
for DQN, but with the following loss function,

Li(wi) = E(s,a,r,s′)∼U(D)

{(
r + γQŵi(s

′, arg max
a′

Qwi(s
′, a′))−Qwi(s, a)

)2
}
. (27)

The update to the target network stays unchanged from DQN, and remains a periodic copy
of the online network.

DDQN gets most of the benefit of Double Q-learning [12], while keeping the rest of
the DQN algorithm intact for a fair comparison, and with minimal computational overhead,
since no additional parameters are required.

4.1.3 Prioritized Experience Replay

Experience replay lets online RL agents remember and reuse experiences from the past. It
has been shown in DQN to greatly stabilize the training of a value function. However, the
uniform experience replay in DQN simply replays transitions at the same frequency that
they were originally experienced, regardless of their significance. It is therefore desirable
to investigate how prioritizing which transitions are replayed can make experience replay
more efficient and effective than if all transitions are replayed uniformly. It is well-known
that planning algorithms such as value iteration can be made more efficient by prioritizing
updates in an appropriate order. Prioritized sweeping [31] selects which state to update next
based on some priority measures. Motivated by the idea of prioritized sweeping, Schaul et
al. [39] propose the prioritized experience replay. The key idea is to more frequently replay
transitions with high expected learning process, as measured by the magnitude of their TD
errors.

Prioritizing With TD-Error The key component of prioritized replay is the criterion by
which the importance of each transition is measured. A reasonable proxy is the magnitude
of a transition’s TD error δ, which indicates how far the value is from its next step bootstrap
estimate. And this is particularly suitable for Q-learning methods that already compute the
TD-error.

In practice, new transitions arrive without a known TD-error and they are put at max-
imum priority in order to guarantee that all experiences are seen at least once. When a
transition is replayed from the memory, the TD-error of this transition sample is then up-
dated. A naive sampling strategy is to use greedy TD-error prioritization, which always
choose the transition with the maximum magnitude of TD-error. However, this approach
suffers some problems, which are explained below.

Stochastic Prioritization Greedy TD-error prioritization has several issues. Transitions
that have a low TD error on first visit may not be replayed for a long time. Further, it is
sensitive to reward noises. Finally, greedy prioritization focuses on a small subset of the
experience and this lack of diversity makes the system prone to overfitting.

18

To overcome these issues, a stochastic sampling method that interpolates between pure
greedy prioritization and uniform random sampling is adopted. The probability of sampling
transition i is calculated as

P (i) =
pαi∑
k p

α
k

,

where α determines how much prioritization is used (α = 0 corresponds to the uniform
case) and pi > 0 is the priority of transition i. Two prioritization variants are considered,
i.e., proportional prioritization where pi = |δi| + ε, where ε is a small positive constant
that prevents the edge-case of transitions not being revisited once their error is zero, and
rank-based prioritization where pi = 1

rank(i)
, where rank(i) is the rank of transition i when

the replay memory is sorted according to |δi|.
Another issue is that prioritized replay introduces bias because it changes the data

distribution in an uncontrolled fashion. Fortunately the bias can be corrected by using
importance-sampling (IS) weights

mi =

(
1

N
· 1

P (i)

)β
,

which fully compensate for the non-uniform probabilities P (i) if β = 1. These weights
can be folded into the Q-learning update by using miδi instead of δi.

Prioritized replay is shown to both significantly speed up the learning process and to
achieve better final policy quality.

4.1.4 Dueling Network Architectures

DQN and its several variants all use the same standard neural network architecture to rep-
resent the state-action value function. To learn the value function more efficiently, [50]
proposes the dueling architecture to explicitly separate the representation of state value
functions V (s) and state-action advantages A(s, a). The dueling architecture consists of
two streams that represent the value and advantage functions, while sharing a common
convolutional feature learning module. The two streams are then combined via a special
aggregating layer to produce an estimate of the state-action value function Q(s, a). This
dueling network can be understood as a single Q-network with two streams that replaces
the popular single-stream Q-network in existing algorithms such DQN. The dueling net-
work automatically produces separate estimates of the state value function and advantage
function, without any extra supervision.

Specifically, consider a dueling network where one stream of fully-connected layers
outputs a scalar V (s; β, w1), and the other stream outputs a vector A(s, a; β, w2). Here,
β denotes the parameters of the convolutional layers, while w1 and w2 are the parameters
of the two streams of fully-connected layers. Using the definition of advantage, a naive
aggregating module can be constructed as follows:

Q(s, a; β, w1, w2) = V (s; β, w1) + A(s, a; β, w2).

However, the above equation is unidentifiable in the sense that given Q we cannot recover
V and A uniquely. To address this issue of identifiability, the advantage function estimator

19

can be forced to have zero value at the chosen action. That is

Q(s, a; β, w1, w2) = V (s; β, w1) +
(
A(s, a; β, w2)−max

a′
A(s, a′; β, w2)

)
. (28)

Now, for a∗ = arg maxa′ Q(s, a′; β, w1, w2) = arg maxa′ A(s, a′; β, w2), we have
Q(s, a∗; β, w1, w2) = V (s; β, w1). Hence V (s; β, w1) provides an estimate of the value
function while the other stream produces an estimate of the advantage function. An alter-
native module can also replace the max operator with an average:

Q(s, a; β, w1, w2) = V (s; β, w1) +

(
A(s, a; β, w2)− 1

|A|
∑
a′

A(s, a′; β, w2)

)
. (29)

Both the above equations can be viewed and implemented as part of the network and
existing DQN algorithms can be recycled to train the dueling architecture. The advantage of
the dueling architecture lies partly in its ability to learn the state value function efficiently.
With every update of the Q-values, the value stream V is updated — this contrasts with
the updates in a single-stream architecture where only the value for one of the actions is
updated. In practice this phenomenon is more significantly observed especially when the
number of actions is large.

4.1.5 Deep Recurrent Q-Network

DQNs are limited in the sense that they learn a mapping from a limited number of past
states. Instead of a MDP, many real-world tasks often feature incomplete and noisy state
information and become a Partially-Observable Markov Decision Process (POMDP). The
Deep Recurrent Q-Network (DRQN) [13] is introduced to better deal with POMDPs by
leveraging advances in RNNs.

Partial Observability In real world environments it’s rare that the full state of the envi-
ronment can be provided to the agent. A POMDP better captures the dynamics of many
real world environments by explicitly assuming that the agent only gets partial glimpses of
the underlying system state. Formally the agent now receives an observation o ∈ Ω instead
of a state. This observation is generated from the underlying system state according to the
probability distribution o ∼ O(s). Vanilla DQN has no explicit mechanisms for decipher-
ing the underlying state of the POMDP and simply uses a fixed number of stacked history
observations as the state depictions.

DRQN Architecture The architecture of DRQN replaces DQN’s first fully connected
layer with a LSTM. For input, the recurrent network now takes a observation for a single
time step instead of stacked history observations required by DQN. DRQN shares the same
convolutional layers with DQN while the convolutional outputs are fed to the fully con-
nected LSTM layer. Finally, a fully connected linear layer outputs the state-action value
for each possible action.

The added recurrency in DRQN makes it successfully integrates information through
time by seeing only a single frame at each time step and replicates DQN’s performance on
partially observed environments.

20

4.1.6 Asynchronous Q-learning Variations

Deep RL algorithms based on experience replay have achieved unprecedented success in a
variety of domains. However, experience replay has several drawbacks: it uses more mem-
ory and computation per real interaction, and it requires off-policy learning algorithms.
Motivated by parallel learning, a simple and lightweight framework for deep RL that uses
asynchronous gradient descent is proposed in [29]. This parallelism enables a much larger
spectrum of on-policy RL algorithms, such as SARSA, n-step methods, as well as off-
policy RL algorithms such as Q-learning, to be applied robustly and effectively using deep
neural networks.

Asynchronous Framework The aim in designing such a framework is to train deep neu-
ral network policies reliably. They use two main ideas to make the modified algorithms
practical. First, they use asynchronous actor-learners, which are implemented by multiple
CPU threads on a single machine. Keeping the learners on a single machine removes the
communication costs of sending gradients and parameters. Second, multiple actor-learners
running in parallel are likely to be exploring different parts of the environment. More-
over, different exploration strategies are used for different actor-learners to maximize this
diversity. Therefore, the overall changes being made to the parameters by multiple actor-
learners are likely to be less correlated. The parallel actors can perform the stabilizing role
undertaken by experience replay in the DQN training algorithm.

Asynchronous One-Step Q-learning Similar to DQN, a target network is used. Each
thread interacts with its own environment copy and at each step computes a gradient of the
Q-learning loss. Gradients are accumulated over multiple time steps, which is similar to
using minibatch. Additionally, each thread has a different exploration strategy (different ε
in ε-greedy exploration).

Asynchronous One-Step SARSA The only difference with the Q-learning method is
that it uses a different target value for Q(s, a). The target value used by one-step SARSA
is r + γQ(s′, a′), where a′ is the action taken in state s′.

Asynchronous N-Step Q-learning In n-step Q-learning, Q(s, a) is updated toward the
n-step return defined as rt + γrt+1 + · · · + γn−1rt+n−1 + maxa γ

nQ(st+n, a). This results
in a single reward r directly affecting the values of n preceding state-action pairs. This
makes the process of propagating rewards to relevant state-action pairs potentially much
more efficient.

4.1.7 Discussion

DQN is the first deep reinforcement learning method to bring the success of deep learning to
the reinforcement learning fields. The innovations of experience replay and target network
are crucial to the stability of training large, nonlinear function approximators (such as deep
convolutional neural networks) to represent the state-action value function Q(s, a). By

21

the combination of deep learning and Q-learning, DQN and its variants allow the agent
to learn complex strategies in an end-to-end manner and bridge the divide between high-
dimensional sensory inputs and actions. However, these methods are restricted to discrete
action domains due to the limitation of Q-learning.

4.2 Policy-based Deep Reinforcement Learning
Policy-based approaches explicitly maintain a parameterized policy, which is known as the
actor, since it is used to select actions. They require minimal computation in order to select
actions, especially for continuous action domains. As shown in Section 3.2.2, actor-only
methods suffer from the problem that the estimated policy gradient has a large variance.
Therefore training deep neural networks to represent the policy is even more challenging
for these actor-only methods. In the following text, we discuss some recent advances on
combining deep learning with actor-critic approaches.

4.2.1 Asynchronous Advantage Actor-Critic

Consider a stochastic policy πθ(s, a) parameterized by θ, standard REINFORCE algo-
rithms estimate the policy gradient by ∇θ log πθ(st, at)Q

π(st, at), as shown in equation
(15). We can use Rt =

∑∞
k=0 γ

krt+k to get an unbiased estimate of Qπ(st, at) and hence
∇θ log πθ(st, at)Rt is an unbiased estimate of the policy gradient. It is possible to reduce
the variance of this estimate while keeping unbiased by subtracting a baseline bt(st), which
is a learned function of the state st. The resulting gradient is∇θ log πθ(st, at)(Rt− bt(st)).
A learned estimate of the value function is commonly used as the baseline bt(st) ≈ V π(st).
When an approximated value function is used as the baseline, the quantity Rt − bt used
to scale the policy gradient is actually the estimate of the advantage function Aπ(st, at) =
Qπ(st, at)− V π(st). And this approach can be seen as the advantage actor-critic method.

Following the asynchronous framework described in Section 4.1.6, the asynchronous
advantage actor-critic (A3C) algorithm is also proposed in [29]. A3C maintains a policy
πθ(s, a) and an estimate of the value function Vw(s). Like the n-step Q-learning variant,
A3C uses the n-step returns to update both the policy and the value function. The update
performed by A3C can be seen as ∇θ′ log π(st, at; θ

′)A(st, at; θ, w) where A(st, at; θ, w)
(θ and θ′ are the global shared parameter and thread-specific parameter respectively) is an
estimate of the advantage function given by

∑k−1
i=0 γ

irt+i+γkV (st+k;w)−V (st;w), where
k can vary from state to state and is upper-bounder by tmax.

By introducing the parallel actor learners and accumulated gradient updates, A3C im-
proves the training stability a lot, especially if deep neural network function approximators
are used.

4.2.2 Trust Region Policy Optimization

Policy-based RL methods typically work by getting a good estimator of the policy gra-
dient, which is essentially the gradient of the expected return with respect to the policy
parameters. However most policy gradient methods do not give us any guidance on how to

22

choose the step size, making these methods oscillate in practice. A recent work [40] pro-
poses and analyzes trust region methods for optimizing stochastic policies, with guaranteed
monotonic improvement.

Consider the expected return of two different policies J(π) and J(π̃), we have the
following identity equation [19]:

J(π̃) = J(π) +

∫
S
dπ̃(s)

∫
A
π̃(s, a)Aπ(s, a). (30)

Equation (30) expresses the expected cost of another policy π̃ in terms of the advantage
over π, accumulated over time steps. The complex dependency of dπ̃(s) on π̃ makes (30)
difficult to optimize. Instead, the following local approximation to J(π̃) is considered:

Lπ(π̃) = J(π) +

∫
S
dπ(s)

∫
A
π̃(s, a)Aπ(s, a). (31)

If the policy parameterization is differentiable, then it is shown in [19] that Lπ(π̃) matches
J(π̃) to first order. One principal theoretical result in [40] is that by optimizing the above
approximation function plus a distance measure between two different policies, we are
guaranteed to get a sequence of monotonically improving policies. Formally, by solving
the following optimization problem:

πi+1 = arg max
π

[
Lπi(π) +

(
2εγ

(1− γ)2

)
Dmax
KL (πi||π)

]
where ε = max

s
max
a
|Aπ(s, a)|, Dmax

KL (πi||π) = max
s
DKL(πi(s, ·)||π(s, ·))

and Lπi(π) = J(πi) +

∫
S
dπi(s)

∫
A
π(s, a)Aπi(s, a),

we guarantee that J(πi+1) ≥ J(πi).
Based on the above theoretical result, the trust region policy optimization (TRPO) is

proposed in [40], which is an approximation to the above optimization procedure. Specifi-
cally, the following optimization problem is solved to generate a policy update:

max Lπθold (πθ)

subject to D̄KL(πθold ||πθ) ≤ δ,
(32)

where πθold denotes the previous policy that we wish to improve upon. The penalty is
replaced by a constraint on the KL divergence and a heuristic approximation is used which
considers the average KL divergence. Equation (32) can be further formulated as follows
by applying Monte Carlo simulation to the objective and constraint:

max
θ

E
{
πθ(s, a)

πθold(s, a)
Aθold(s, a)

}
subject to E {DKL(πθold(s, ·)||πθ(s, ·))} ≤ δ.

(33)

The optimization problem defined in equation (32) actually provides a unifying per-
spective on a number of policy update schemes. The natural policy gradient [18] can be

23

obtained as a special case of the update in (32) by using a linear approximation to L and a
quadratic approximation to the D̄KL constraint, resulting in the following problem:

max
θ

[
∇θLπθold (πθ)|θ=θold(θ − θold)

]
subject to

1

2
(θold − θ)TF(θold)(θold − θ) ≤ δ,

where F(θold)ij =
∂

∂θi

∂

∂θj
E {DKL(πθold(s, ·)||πθ(s, ·))} |θ=θold .

(34)

The update for the standard natural policy gradient is θnew = θold−λF(θold)−1∇θL(θ)|θ=θold ,
where λ is typically treated as an algorithm parameter. The standard policy gradient update
can also be obtained by using an `2 constraint:

max
θ

[
∇θLπθold (πθ)|θ=θold(θ − θold)

]
subject to

1

2
||θ − θold||2 ≤ δ.

(35)

In practice, to efficiently solve the trust region policy optimization problem, the same
approximation schemes are used as that in the natural policy gradient. One major differ-
ence between the natural policy gradient and TRPO is that TRPO enforces the KL diver-
gence constraint at each update, which is implemented by a line search. Without this line
search, the algorithm occasionally computes large steps that cause a catastrophic degrada-
tion of performance. For deep neural network policies with tens of thousands of parameters,
forming and inverting the Fisher information matrix incurs prohibitive computation cost.
Therefore a conjugate gradient algorithm is proposed in TRPO to compute the natural gra-
dient direction without explicitly forming the matrix inverse. This makes TRPO practical
to deep neural network policies.

4.2.3 Deep Deterministic Policy Gradient

Most existing actor-critic algorithms are on-policy RL methods, in which the critic must
learn about and critique whatever policy is currently being followed by the actor. There-
fore, on-policy actor-critic methods cannot adopt techniques such as experience replay [30]
and learning neural function approximators is difficult and unstable. To bring the success
of DQN to continuous action domains, [27] proposes a model-free, off-policy actor-critic
algorithm using deep function approximators. The resulting deep deterministic policy gra-
dient (DDPG) algorithm combines deep learning with the deterministic policy gradient
(DPG) [42].

Deterministic Policy Gradient We now formally consider a deterministic policy πθ(s) :
S 7→ A with parameter vector θ. With a deterministic policy, the expected return J(π) is
then

J(πθ) =

∫
S
dπ(s)

∫
S
f(s, π(s), s′)R(s, π(s), s′)ds′ds, (36)

where the notations follow the definitions in Section 3.1. A deterministic analogue to the
policy gradient theorem is provided in [42] as follows:

24

Theorem 3 (Deterministic Policy Gradient Theorem) Suppose that the MDP defined in
Section 3.1 and the deterministic policy satisfy the following condition:
f(s, a, s′),∇af(s, a, s′),∇θπθ(s), R(s, a, s′),∇aR(s, a, s′), d0(s) are all continuous in all
parameters and variables. These imply that ∇θπθ(s) and ∇aQ

π(s, a) exist and that the
deterministic policy gradient exists. Then

∇θJ(πθ) =

∫
S
dπ(s)∇θπθ(s)∇aQ

π(s, a)|a=πθ(s)ds. (37)

It is shown in [42] that the deterministic policy gradient is the limiting case, as the policy
variance tends to zero, of the stochastic policy gradient. Therefore the familiar machinery
of policy gradients, such as compatible function approximation, natural gradients, actor-
critic, is also applicable to deterministic policy gradients.

From a practical view point, there is a crucial difference between the stochastic and
deterministic policy gradients. In the stochastic case, the policy gradient integrates over
both state and action spaces, whereas in the deterministic case it only integrates over the
state space. As a result, the deterministic policy gradient can be estimated much more
efficiently than the usual stochastic policy gradient, especially if the action space has many
dimensions. Based on the above deterministic policy gradient theorem, a series of off-
policy actor-critic algorithms are proposed in [42].

Deep Deterministic Policy Gradient DDPG combines the actor-critic approach devel-
oped in DPG with insights from the recent success of DQN. DQN is able to learn value
functions using large, nonlinear function approximators in s stable and robust way due to
two innovations: 1. the network is trained off-policy with samples from a replay buffer to
minimize correlations between samples; 2. the network is trained with a target Q-network
to give consistent targets during temporal difference learning. DDPG makes use of the
same ideas in the off-policy actor-critic algorithms.

In the DDPG algorithm, both the deterministic actor πθ(s) and the critic Qw(s, a) are
parameterized by deep neural networks. The critic is learned in the same way as in DQN.
The actor is updated by the following deterministic policy gradient

Eπ′
{
∇aQw(s, a)|s=st,a=πθ(st)∇θπθ(s)|s=st

}
, (38)

where the expectation is taken with respect to a behavior policy. As in DQN, DDPG also
uses a replay buffer. Transitions are sampled from the environment according to the explo-
ration policy and the sample is stored in the replay buffer. At each timestep the actor and
critic are updated by sampling a minibatch uniformly from the buffer. DDPG also adopts
the idea of target network from DQN but modify it for actor-critic by using “soft” target
updates, instead of directly copying weights. More specifically, the weights of the target
network are updated as follows:

θ′ = τθ + (1− τ)θ′

w′ = τw + (1− τ)w′.

The exploration policy π′ is constructed by adding noise sampled from a noise process N
to the actor policy

π′(s) = πθ(s) +N ,

25

where N is chosen as an Ornstein-Uhlenbeck process [46] to generate temporally corre-
lated exploration noise.

4.3 Combining Deep Learning with Model-based Methods
While model-free RL methods provide a simple, direct approach to train policies for com-
plex tasks with minimal feature and policy engineering, the sample complexity of model-
free algorithms tends to be high, particularly when using function approximators with large
capacity such as deep neural networks. This limits their applicability to real-world physi-
cal problems. In this section we discuss the recent attempts to combine deep learning with
model-based RL methods.

4.3.1 Q-learning Variations

Model-free RL methods enjoy the benefit of reduced manual engineering and greater gen-
erality at the price of high sample complexity. Model-based methods typically improves
sample efficiency but limit the policy to only be as good as the learned model. It is there-
fore desirable to bring the generality of model-free deep RL into real-world domains by
reducing their sample complexity. Gu et al. [10] proposes two complementary techniques
for improving the efficiency of deep RL in continuous action domains, which are presented
in detail below.

Continuous Q-learning DQN and its variants are only applicable to discrete action do-
mains since finding the greedy policy is non-trivial. For this reason, continuous action
domains are often tackled using actor-critic methods, where a separate parameterized actor
policy π is learned in addition to the value function, such as DDPG. To enable Q-learning in
continuous action domains, the normalized advantage functions (NAF) is proposed in [10].
The idea behind the normalized advantage functions is to represent the state-action value
function Q(s, a) in such a way that its maximum, arg maxaQ(s, a), can de determined an-
alytically. Specifically, the advantage function is parameterized as a quadratic function of
nonlinear features of the state:

A(s, a;wA) = −1

2
(a− µ(s;wµ))TP(s;wP)(a− µ(s;wµ)),

Q(s, a;wA, wV) = A(s, a;wA) + V (s;wV).

where P(s;wP) is a state-dependent, positive-definite matrix, which is parameterized by
P(s;wP) = L(s;wP)L(s;wP)T , where L(s;wP) is a lower-triangular matrix whose en-
tries come from a linear output layer of a neural network, with the diagonal terms exponen-
tiated. While this representation is more restrictive than a general neural network function,
the action that maximizes the Q-function is always given by µ(s;wµ). This representation
can be used with deep Q-learning algorithms analogous to DQN, using target networks and
a replay buffers as described in DDPG. The parameters {wV , wµ, wP} are parameterized
by separate neural networks.

26

Model-based Imagination Rollouts The data efficiency of NAF can be improved by
exploiting learned models. However, a naive idea to use the learned model to generate
good behaviors by planning or trajectory optimization often brings very small or even no
improvement in practice. The intuition behind this result is that off-policy model-based ex-
ploration is too different from the learned policy and Q-learning must consider alternatives
in order to ascertain the optimality of a given action.

One way to avoid these problems while still allowing a large amount of on-policy ex-
ploration is to generate on-policy trajectories under a learned model. Adding synthetic
samples to the replay buffer effectively augments the amount of experience available for
Q-learning. The so called imagination rollouts can be viewed as a variant of the Dyna-Q
algorithm [43]. It’s also related to Monte Carlo tree search methods in the sense that the
simulation data are used to train the policy. In practice it is observed that the benefit of
model-based learning is derived in the early stages of the learning process, when the pol-
icy induced by the Q-function is poor. As learning proceeds, on-policy behavior tends to
outperform model-based controllers.

4.3.2 Guided Policy Search

Successful applications of deep RL rely on large amounts of data interactions with the en-
vironment. However, real-world robot interaction data is often scarce, especially in safety-
critic unstable systems. To address these challenges while still being able to train end-to-
end deep neural network policies on robots, Levine et al. [26] proposes the guided policy
search (GPS) algorithm for sensorimotor control.

Guided policy search converts policy search into supervised learning, by iteratively
constructing the training data using an efficient model-free trajectory optimization proce-
dure. GPS consists of two main components. The first is a supervised learning algorithm
that trains policy parameterizations πθ. This is implemented as a stochastic Gaussian pol-
icy, with the mean and the covariance both parameterized by deep neural networks. The
second component is a trajectory-centric RL algorithm that generates guiding distributions
which provide the supervision used to train the policy. These two components form a pol-
icy search algorithm that can be used to train complex robotic tasks using only a high-level
reward function, as in RL. Supervised learning will not, in general, produce a policy with
good long-horizon performance, since a small mistake on the policy will place the sys-
tem into states that are outside the distribution in the training data, causing compounding
errors. To address this issue, GPS alternates between model-based trajectory-centric RL
and supervised learning. By explicitly modeling the KL divergence between two kinds of
trajectories, the problem can be formalized as a variant of BADMM [49] algorithm for con-
strained optimization which converges to a locally optimal solution. Readers are referred
to [26] for algorithm derivation details.

GPS allows us to train deep neural network policies efficiently in an end-to-end manner.
However, the quality of the final policy is restricted by the performance of the model-based
method.

27

5 Applications of Deep Reinforcement Learning
Deep reinforcement learning has been successfully applied to a variety of domains, ranging
from simple classic control problem to very complex games such as Go. In this section
we review the recent applications of deep reinforcement learning, which can be roughly
divided into the following two categories: game playing and robotics application.

5.1 Deep Reinforcement Learning for Playing Games
Deep reinforcement learning is naturally suitable to learn to play various games since the
agent can in principle get unlimited training data by consistently interacting with the game
environments. Indeed, the success of the recent deep reinforcement learning trend starts
with the video game domain.

Bellemare et al. [2] introduce the Arcade Learning Environment (ALE): a challenging
platform evaluating the development of general, domain-independent AI technology. ALE
provides an interface to hundreds of Atari 2600 game environments, each one different,
interesting, and designed to be a challenge for human players. Following the development
of ALE, Mnih et al. [30] apply the DQN algorithm to the challenging domain of Atari 2600
games [2] and are able to surpass the performance of all previous algorithms and achieve
a level comparable to that of a professional human games tester across a set of 49 games.
With the exciting success of DQN, various deep reinforcement learning methods have been
proposed and the ALE has become the most popular RL benchmark for evaluating these
methods.

In addition to the Atari 2600 games, some other popular games are also explored. For
example, Oh et al. [32] introduce a new set of RL tasks in Minecraft1 (a flexible 3D
world). These tasks not only have the usual RL challenges of partial observability (due to
first-person visual observations), delayed rewards, high-dimensional perception, but also
require an agent to use active perception. They added memory components to DQN to
tackle these tasks. Deep reinforcement learning has also been applied in 3D first-person
shooter games [22] and car racing games [27].

Another huge success of deep reinforcement learning is mastering the game of Go [41].
The game of Go has long been viewed as the most challenging of classic games for artificial
intelligence due to its enormous search space and the difficulty of evaluating board posi-
tions and moves. Silver et al. [41] introduce a new approach to computer Go that uses value
networks to evaluate board positions and policy networks to select moves. These deep neu-
ral networks are trained by a novel combination of supervised training from human expert
games, and reinforcement learning from games of self-play. The RL approach is further
combined with Monte Carlo search and the resulting AlphaGo defeated the human world
champion for the first time.

1https://minecraft.net/

28

5.2 Deep Reinforcement Learning for Robotics
RL also offers to robotics a general framework for the design of sophisticated behaviors.
Traditional RL methods have been used in simple classic control tasks such as cart-pole bal-
ancing, cart-pole swing up, and double inverted pendulum balancing. These relatively low-
dimensional tasks provide quick evaluations and comparisons of simple RL algorithms.
Recently Duan et al. [5] propose a unified benchmark suit of various continuous control
tasks, including classic tasks, tasks with very high state and action dimensionality, tasks
with partial observations, and tasks with hierarchical structure. The author also compare
the difference of various deep reinforcement learning methods,which lays the foundation
for applying deep reinforcement learning to more complex robotics applications.

Due to the sample efficiency of model-based methods, combinations of deep learning
and model-based RL methods are often preferred in real-world robotics. In [26] GPS is
applied to various robotic manipulation tasks. Zhang et al. [54] further apply GPS to au-
tonomous aerial vehicles by combination of model predictive control. The main advantage
of these methods is that the whole system including perception and control can be trained
in an end-to-end manner.

6 Conclusions and Future Research
In this survey, we identified a current trend of combining deep learning and RL and re-
viewed recent work on deep reinforcement learning. By introducing deep learning into the
RL domains, deep reinforcement learning allows us to train policies directly from high-
dimensional sensory inputs. To stabilize the training process when deep neural networks
are used as the function approximators for value function or the policy, several algorithms
have been proposed, ranging from deep Q-network, asynchronous Q-learning to deep de-
terministic policy gradient. New neural network architectures designed specially for RL
are also explored to further boost the performance. With the great representation power
of deep neural networks, we can now achieve human level performance on many complex
control domains. Many model-free deep RL methods are capable to solve various decision
making problem with minimal manual effort.

Current applications of deep RL, especially for those model-free methods, focus on
playing games and controlling in a simulator, where an interacting environment is avail-
able to generate infinite training data. Directly applying model-free deep RL methods to
real-world applications is difficult since real-world interaction is scarce and has many limi-
tations. In the future, we may expect to transfer policies trained in simulated environments
to real-world tasks. Besides transferring learned policies from simulated environments to
real-world tasks, transfer learning between and multi-task learning of similar tasks are also
promising directions to reduce the sample complexity of model-free RL methods. While a
large majority of recent deep RL methods are model-based, their sample efficiency tends
to be less satisfying. Combing model-free deep RL methods with traditional model-based
methods in a smart way is also an interesting direction.

29

References
[1] J Andrew Bagnell and Jeff Schneider. Covariant policy search. IJCAI, 2003.

[2] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 2012.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[4] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee.
Natural actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

[5] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmark-
ing deep reinforcement learning for continuous control. In ICML, 2016.

[6] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In CVPR, 2014.

[8] Peter W Glynn. Likelilood ratio gradient estimation: an overview. In Proceedings of
the 19th conference on Winter simulation, pages 366–375. ACM, 1987.

[9] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey
of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(6):1291–1307, 2012.

[10] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep
q-learning with model-based acceleration. In ICML, 2016.

[11] Vijaykumar Gullapalli. A stochastic reinforcement learning algorithm for learning
real-valued functions. Neural networks, 3(6):671–692, 1990.

[12] Hado V Hasselt. Double q-learning. In Advances in Neural Information Processing
Systems, pages 2613–2621, 2010.

[13] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observ-
able mdps. In 2015 AAAI Fall Symposium Series, 2015.

[14] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,
et al. Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

30

[16] David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture of
monkey striate cortex. The Journal of Physiology, 195(1):215–243, 1968.

[17] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[18] Sham Kakade. A natural policy gradient. In NIPS, volume 14, pages 1531–1538,
2001.

[19] Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In ICML, volume 2, pages 267–274, 2002.

[20] Vijay R Konda and John N Tsitsiklis. On actor-critic algorithms. SIAM journal on
Control and Optimization, 42(4):1143–1166, 2003.

[21] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep con-
volutional neural networks. In NIPS, 2012.

[22] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep rein-
forcement learning. arXiv preprint arXiv:1609.05521, 2016.

[23] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural networks in rein-
forcement learning. In The 2010 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2010.

[24] John Langford and Bianca Zadrozny. Relating reinforcement learning performance
to classification performance. In ICML, pages 473–480. ACM, 2005.

[25] Michael KK Leung, Hui Yuan Xiong, Leo J Lee, and Brendan J Frey. Deep learning
of the tissue-regulated splicing code. Bioinformatics, 30(12):i121–i129, 2014.

[26] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. Journal of Machine Learning Research, 17(39):1–40,
2016.

[27] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. In ICLR, 2016.

[28] Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and Vladimir Svetnik.
Deep neural nets as a method for quantitative structure–activity relationships. Journal
of Chemical Information and Modeling, 55(2):263–274, 2015.

[29] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In ICML, 2016.

31

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[31] Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13(1):103–130, 1993.

[32] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of
memory, active perception, and action in minecraft. arXiv preprint arXiv:1605.09128,
2016.

[33] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682–697, 2008.

[34] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In European
Conference on Machine Learning, pages 280–291. Springer, 2005.

[35] Jan Reinhard Peters. Machine learning of motor skills for robotics. PhD thesis,
University of Southern California, 2007.

[36] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neu-
ral reinforcement learning method. In European Conference on Machine Learning,
pages 317–328. Springer, 2005.

[37] Martin Riedmiller, Jan Peters, and Stefan Schaal. Evaluation of policy gradient meth-
ods and variants on the cart-pole benchmark. In 2007 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning, pages 254–
261. IEEE, 2007.

[38] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems. University of Cambridge, Department of Engineering, 1994.

[39] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. In ICLR, 2016.

[40] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In ICML, pages 1889–1897, 2015.

[41] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

[42] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

[43] Richard S Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In ICML, pages 216–224, 1990.

32

[44] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[45] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al.
Policy gradient methods for reinforcement learning with function approximation. In
NIPS, volume 99, pages 1057–1063, 1999.

[46] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion.
Physical review, 36(5):823, 1930.

[47] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In AAAI, 2016.

[48] ALEKSAND. VM, VI Sysoyev, and SHEMENEV. VV. Stochastic optimization. En-
gineering Cybernetics, (5):11, 1968.

[49] Huahua Wang, Arindam Banerjee, and Zhi-Quan Luo. Parallel direction method of
multipliers. In NIPS, pages 181–189, 2014.

[50] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for
deep reinforcement learning. In ICML, 2016.

[51] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[52] Paul J Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural Networks, 1(4):339–356, 1988.

[53] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[54] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep
control policies for autonomous aerial vehicles with MPC-guided policy search. In
ICRA, 2016.

33

